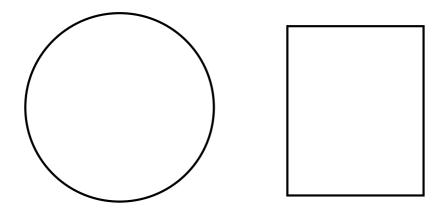
6.1: The Set of Rational Numbers

Definition: The <u>rational numbers</u> are all numbers of the form $\frac{a}{b}$, where a and b are integers with $b \neq 0$. We call a the <u>numerator</u> and b the <u>denominator</u>. We usually refer to these numbers in elementary school as fractions.

Example: Draw a figure to represent $\frac{1}{2} \; \text{ and } \frac{1}{3}$.



Example: Draw the points $\frac{-3}{2}$, 0, $\frac{3}{4}$, 2, $\frac{-7}{4}$, and $\frac{1}{2}$ on a number line.

Definition: In the fraction $\frac{a}{b}$, if |a| < |b|, we call it a proper fraction. If $|a| \ge |b|$, we call it an improper fraction.

Example: List some proper and improper fractions.

Proper: Improper:

Question: Is every integer a rational number?

Definition: Two fractions that represent the same rational number are known as equivalent fractions

Example: Find fractions that are equivalent to $\frac{1}{2}$ by folding paper.

Fundamental Law of Fractions: If $\frac{a}{b}$ is any fraction and n is a nonzero integer, then $\frac{a}{b} = \frac{an}{bn}$.

Example: Show that $\frac{-7}{2} = \frac{7}{-2}$.

Example: Find a value for x such that $\frac{3}{12} = \frac{x}{72}$.

Definition: A rational number $\frac{a}{b}$ is said to be insimplest form if b > 0 and gcd(a,b) = 1.

Example: Simplify the fraction $\frac{45}{300}$ by using the GCD.

Equality of Fractions: Show that $\frac{10}{16} = \frac{15}{24}$.

Theorem: Two fractions $\frac{a}{b}$ and $\frac{c}{d}$ are equivalent if and only if ad = bc. That is, we can cross multiply to check these.

Proof:

Theorem: If a, b, and c are integers with b > 0, then $\frac{a}{b} > \frac{c}{b}$ if and only if a > c.

Example: Show that $\frac{9}{12} > \frac{6}{9}$.

Theorem: If a, b, c and d are integers with b, d > 0, then $\frac{a}{b} > \frac{c}{d}$ if and only if ad > bc.

Proof: